MEDIDORES  PARSHALL (*)

Por Carlos Fernandes


1. INTRODUÇÃO

A medição de vazão em condutos livres, particularmente em canais abertos, é um dos problemas mais importantes no estudo da hidráulica aplicada. Entre os inúmeros dispositivos propostos os mais utilizados são os medidores de regime crítico,entre eles as ditas calhas.

Nas calhas de medição de vazão, a água é submetida a uma concentração produzida pelas laterais ou pela elevação do fundo do canal ou por ambas. Uma cacterística comum das calhas medidoras é a formação proposital de uma onda de refluxo próximo a sua saída, o que conduz a ima perda de carga correspondente três a quatro vezes menor que a que seria observada em um vertedor de mesma capacidade.

Entre estes dispositivos de medição um dos mais populares é o medidor Parshall ou vertedor parshall, inventado pelo engenheiro americano do Serviço de Irrigação do Departamento de Agricultura dos Estados unidos, Ralph Leroy Parshall (1881-1960), que o criou com base nos estudos de Venturi. Desenvolvido em tamanhos padronizados de 3" até 10', largura nominal "W" de sua garganta (Tabela 1), hidraulicamente é um tipo de medidor Venturi. Inicialmente destinado a aplicações em canais de irrigação, este medidor de vazões passou a ser conhecido como Calha Parshall, em honra ao seu criador, e  hoje é freqüentemente empregado além da função original, também como um efetivo misturador de soluções químicas nas estações de tratamento de água.
 

2. O MEDIDOR PARSHALL

A calha Parshall é um dispositivo de medição de vazão na forma de um canal aberto com dimensões padronizados. A água é forçada por uma garganta relativamente estreita, sendo que o nível da água à montante da garganta é o indicativo da vazão a ser medida, independendo do nível da água à jusante de tal garganta. A Tabela 1 mostra os valores padronizados da largura da garganta da calha Parshall bem como de outras dimensões da calha.





Tabela 1 - Dimensões padronizadas da calha Parshal (mm)

W               A      B       C     D    E     F    G   K   N

76 ( 3")      466   457   178   259 381 152 305 25   57
152 ( 6")    621   610   294   393 457 305 610 76 114
229 ( 9")    880   864   380   575 610 305 457 76 114
305 ( 1')   1370 1340    601  845 915 610 915 76 229
457 (1½') 1449 1420   762 1026 915 610 915 76 229
610 ( 2')   1525 1496   915 1207 915 610 915 76 229
915 ( 3')   1677 1645 1220 1572 915 610 915 76 229
1220 ( 4') 1830 1795 1525 1938 915 610 915 76 229
1525 ( 5') 1983 1941 1830 2303 915 610 915 76 229
1830 ( 6') 2135 2090 2135 2667 915 610 915 76 229
2135 ( 7') 2288 2240 2440 3030 915 610 915 76 229
2440 ( 8') 2440 2392 2745 3400 915 610 915 76 229
(Fonte: Azevedo Netto et alli, 1998)

3. DETERMINAÇÃO DA VAZÃO COM CALHA PARSHALL

A base horizontal da calha constitui um nível de referência para o nível de água a montante. Muitas vezes mede-se a altura da água num ponto situado a 2/3 do canal de aproximação da garganta, tendo-se estabelecido empiricamente a seguinte relação entre o nível de água no ponto 0 e a vazão na seção:

Q = 2,2. W. H03/2 , (Q em m3/s)
onde
H0 = altura do nível de água no ponto 0 (m)
W = largura da garganta (m)

Conforme Azevedo Netto e Alvarez (1982), na tabela 2 estão indicados os valores máximos e mínimos da vazão para os diferentes tamanhos da calha.

Uma condição importante para o funcionamento adequado de uma calha Parshall é a de que o nível de água a jusante da calha deve ser suficientemente baixo para evitar o seu "afogamento", um termo que indica que o nível de água a jusante da calha influi sobre o nível a montante. Experimentalmente estabeleceu-se que, tomando-se a base da calha como referência, o nível da água a jusante não deve exceder 60 por cento do nível de água a montante para as calhas com garganta de 3, 6 ou 9 polegadas (isto é W £ 229 mm). Para valores de W acima de 1 pé (305 mm) a proporção máxima é de 70 por cento, ou seja,

H2 / H1£ 0,60 para garganta de 3, 6 ou 9 polegadas ou
H2 / H1 £ 0,70 para garganta de 1 a 8 pés,

indicam escoamento livre sem prejuízo da vazão com afogamentos. Em qualquer situação este afogamento nunca deverá ultrapassar 95% .

Tabela 2 - Valores limites de vazão (l/s) em função da largura da garganta

W                           Vazões (l/s)
mm (...)                mínima máxima

76 ( 3")                   0,85      53,8
152 ( 6")                 1,52    110,4
229 ( 9")                 2,55    251,9
305 ( 1')                  3,11    455,6
457 (1½')               4,25     696,2
610 ( 2')               11,89     936,7
915 ( 3')               17,26      1426
1220 ( 4')             36,79      1921
1525 ( 5')             62,80      2422
1830 ( 6')             74,40      2929
2135 ( 7')             115,4      3440
2440 ( 8')             130,7      3950
(Fonte: Azevedo Netto et alli, 1998)

  4. TEORIA DOS MISTURADORES RÁPIDOS DE CONDIÇÕES CRÍTICAS

No tratamento de água a coagulação é o processo no qual os coagulantes são adicionados à água de modo a reduzir as forças de repulsão entre colóides em suspensão e a floculação é o processo seguinte onde é favorecida a aglomeração das micropartículas em unidades maiores sedimentáveis naturalmente, denominadas de flocos, em um tempo razoavelmente operacionalizável.

O processo de coagulação também é denominado de mistura rápida, pois a dispersão do coagulante no meio aquoso tem que ser desenvolvida de forma mais homogênea e em um menor intervalo de tempo possíveis. Estas condições constituem um dos maiores problemas na tratamento químico da água, pois, além das dificuldades hidráulicas naturais do processo e sendo a coagulação uma etapa inicial do tratamento, sua má execução implicará em prejuízo nas demais fases seguintes.

Hidraulicamente a maneira mais eficiente de se conseguir uma distribuição rápida e homogênea de uma substância em uma massa de água é através de uma mistura turbulenta adequada às condições do reservatório. E uma das maneiras de se calcular a eficiência desta mistura é através da determinação do gradiente de velocidade. Este gradiente pode ser calculado pela expressão

, em s-1,

onde P (kgf.m / s) é a potência dissipada em função da perda de carga hf , Vol (m3) é o volume de deslocamento da água e m (kgf.s/m2)a viscosidade absoluta ou dinâmica.

Lembrar que Potência é o produto do peso específico x vazão x altura, ou seja, P = g.Q.hf, em kgf.m/s.

Quadro de símbolos de algumas características dos líquidos e suas unidades usuais

Símbolos
significado
Unidades usuais
g

aceleração de gravidade
m/s2
r
massa específica
kgf.s2 / m4
g
peso específico ( = r .g )
kgf / m3
d
densidade relativa
-
m
coeficiente de viscosidade (dinâmica ou absoluta)
kgf.s / m2
n
viscosidade cinemática ( = m /r )
m2 / s
     

Não existe estudos conclusivos sobre um valor ótimo para o gradiente para que se consiga a mistura rápida ideal, porém a literatura disponível aconselha que se trabalhe com valores mínimos de 700 a 1000s-1 com tempos de mistura inferiores a 1 segundo (se possível menor que 0,5s). Esta condição normalmente é conseguida quando o processo é desenvolvido em ressaltos hidráulicos, ou seja, em canais abertos onde ocorre a passagem pelo regime crítico de escoamento com condições supercríticas a montante.

Este estudo baseia-se no fato de que sempre que a água passa pelo regime crítico, é possível estabelecer uma relação matemática entre a vazão escoada e a altura da lâmina de água à montante da seção onde o regime atinge a condição crítica de escoamento. O grau de turbulência será tanto mais adequado quando menor for o espaço da transição entre o estágio supercrítico e o tranqüilo subseqüente.
 

5. ENERGIA HIDRÁULICA DISSIPADA E GRADIENTES DE VELOCIDADE

O ressalto hidráulico é um fenômeno que ocorre quando a corrente líquida passa do regime supercrítico ou rápido para o subcrítico ou tranquilo, passando, ao longo do seu desenvolvimento, pelo ponto crítico do escoamento. Para que haja salto (Ver figura) a condição necessária é que

onde

Fi é o número de Froude na seção "i" do salto (de William Froude, 1810-1879, matemático e engenheiro civil inglês).

A energia hidráulica dissipada devida ao gradiente de velocidade que promove a mistura rápida, pode ser calculada pela fórmula de Bélanger (Jean-Baptiste Bélanger, 1789 - 1874, notável hidráulico francês):

h =

Para números de Froude compreendidos entre 4,5 e 16,0, por exemplo, a extensão do ressalto poderá ser estimada pela expressão:

L = 6,5 (h2 -h1).

Com a potência P = g . Q. hf , então

onde o tempo de mistura T é

T = 2L / (V2 + V1)
Vi= velocidade média na seção "i", em m/s,
g= peso específico do líquido, em m3/s,
m= coeficiente de viscosidade.

Uma mudança brusca de declividade em um canal retangular é um dos meios mais simples de se produzir um ressalto hidráulico com a finalidade de se efetivar uma mistura rápida. Neste caso de ressaltos provocados por mudança na declividade de fundo do canal temos:





Eo = E1 + h1 com h1

onde B é a largura do canal e q = Q/B, portanto, a vazão específica ou unitária. Substituindo h1temos em função de Eo
V1 com cos q.
 

6. CÁLCULO DE CALHA PARSHALL COMO MISTURADOR RÁPIDO

A condição de que o ressalto hidráulico produz uma dissipação de energia bastante significativa aliada ao fato de que o estreitamento da garganta do Parshall favorece a uma distribuição mais homogênea do coagulante, são indicadores de que um Parshall seja indicado como uma boa estrutura para funcionamento como unidade de mistura rápida.

O Parshall como proposto inicialmente apenas como medidor de vazão não produz um ressalto hidráulico significativo o que leva o projetista, na maioria das vezes, a criar condições para que este ressalto seja provocado na intensidade adequada a proporcionar uma boa mistura. Estas estruturas resultantes são denominadas de Parshall modificados. Um dos expedientes mais comuns é colocar placas no início do canal de saída de modo a "afogar" adequadamente o fluxo na saída da garganta.

Para que um Parshall seja eficiente deve-se projetá-lo de modo a que o ressalto ocorra imediatamente a jusante de sua garganta, que o nível da água no canal a jusante esteja à altura da soleira da seção convergente à garganta do medidor, empregar velocidades através desta garganta não inferiores a 2,0m/s e perda de carga total superior a 0,25m. Estas condições são recomendadas para que sejam obtidos bons gradientes de velocidade (> 1000s-1 ) com tempos de detenção adequados (< 1s ). (Ver Figura abaixo).





Segundo a literatura disponível ressaltos hidráulicos com número de Froude entre 4,5 e 9,0 produzem uma mistura rápida mais eficiente. Este intervalo corresponde a uma dissipação de energia da ordem de 3,5 a 7,0 HP por m3/s de capacidade a um tempo de mistura em torno de um segundo.

A energia hidráulica disponível calculada na seção transversal por 0 (rever a primeira figura) é dada pela seguinte expressão:
E0 + H0 + N com velocidade V0  e largura  e onde H0 = k. Q n com valores de k e n padronizados e de acordo com a Tabela 3.

(Lembrar que o ponto 0 está sobre a seção transversal correspondente a 2/3 da borda A à montante da garganta, isto é, na seção de montante a uma distância 2/3 de B da entrada da citada garganta).

Tabela 3 - VALORES DE "k" E "n"

W                   k                     n
76 ( 3")         3,704                0,646
152 ( 6")       1,842                0,636
229 ( 9")       1,486                0,633
305 ( 1' )       1,276                0,657
457 (1½')     0,966                0,650
610 ( 2' )       0,795                0,645
915 ( 3' )       0,608                0,639
1220 ( 4' )     0,505                0,634
1525 ( 5' )     0,436                0,630
1830 ( 6' )     0,389                0,627
2440 ( 8' )     0,324                0,623
(Fonte: Azevedo Netto e Richter (1991)


Figura ilustrativa para solução do Exemplo





REFERÊNCIAS BIBLIOGRÁFICAS

Azevedo Neto, J.M. et alli (1998): Manual de hidráulica, Ed. Edgard Blücher Ltda., São Paulo.

Azevedo Neto, J.M. e Richter, C. A. (1991): Tratamento de Água - Tecnologia Atualizada, Ed. Edgard Blücher Ltda., São Paulo.

Marais, G. v. R. (1971): Design of small grit channels. Die Siviele Ingenieur in Suid Afrika.

U S P - Faculdade de Saúde Pública (1974): Técnica de Abastecimento e Tratamento de Água, CETESB, São Paulo, Vol II.

Van Haandel, A. C., Lettinga, G. (1994). Tratamento Anaeróbio de Esgotos: Um Manual para Regiões de Clima Quente, Epgraf, Campina Grande.

Vianna, M. R. (1992): Hidráulica Aplicada às Estações de Tratamento de Água, Instituto de Engenharia Aplicada Editora, Belo Horizonte.



(*) Ralph Leroy Parshall (1881-1960). Engenheiro americano, professor da Colorado State University, localizada em Fort Collins, que inventou (1922-1925), com base nos estudos de Venturi, um revolucionário medidor de vazões no campo da irrigação, que passou a ser denominado de Calha Parshall. Como estudante foi um dos diplomados distintos da Faculdade e desfrutou de uma longa e prestigiosa carreira em irrigação, trabalhando em Forte Collins, especialmente depois de desenvolveu a sua Calha. Este medidor foi desenvolvido para o United States Bureau of Reclamation, e teve publicadas suas dimensões padronizadas, pela primeira vez, pelo Bureau of Reclamation do U.S. Department of the Interior, no Water Measurement Manual. O sucesso de seu invento aumentou sua bolsa de estudos, enquanto era professor no Colorado Agricultural and Mechanical College. Hoje é largamente empregada em todo o mundo, além de medidor de descargas industriais e de vazões de água de irrigação, também como medidor de vazões e efetivo misturador de soluções químicas nas estações de tratamento de água.